If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(2x-3)=x^2-(6x-4)
We move all terms to the left:
2x(2x-3)-(x^2-(6x-4))=0
We multiply parentheses
4x^2-6x-(x^2-(6x-4))=0
We calculate terms in parentheses: -(x^2-(6x-4)), so:We get rid of parentheses
x^2-(6x-4)
We get rid of parentheses
x^2-6x+4
Back to the equation:
-(x^2-6x+4)
4x^2-x^2-6x+6x-4=0
We add all the numbers together, and all the variables
3x^2-4=0
a = 3; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·3·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*3}=\frac{0-4\sqrt{3}}{6} =-\frac{4\sqrt{3}}{6} =-\frac{2\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*3}=\frac{0+4\sqrt{3}}{6} =\frac{4\sqrt{3}}{6} =\frac{2\sqrt{3}}{3} $
| 12x+13+7x+58=180 | | (3x+3)=(4x+8) | | 6x+7=3+8x+4 | | -12+m/4=-2 | | 16+y/3=32 | | 14e+5=75 | | -y/8=-37 | | -2x-1=27 | | 9/11(9x+11)=-1 | | 8x-35=4x-31 | | -12+5x=73 | | 14=4−2q | | 4=2h−14 | | 8(40)+12y=380 | | 9x^2-26+50=0 | | 9x^2-26+50=0 | | 0.2x=80-5 | | x+6-3(-4x-1)=3(x-2) | | y=1000+((y*0.0135*27)/30) | | r/25=19 | | (y-6)+3=4y-7 | | 42+6x+x=180 | | -5(-4y+3)=9y=7(y-3)-8 | | 8^x/2-1=4x/3 | | 9.5+4n=29 | | -7(v+1)=3v+13 | | -34=3(y-3)-8y | | (8a-3)=-2(a-15) | | -12+5x=78 | | x+45=150. | | 6x−15=31 | | -15+9y=-5(4y-2) |